Tractography-based parcellation of the human left inferior parietal lobule

نویسندگان

  • Jiaojian Wang
  • Lingzhong Fan
  • Yu Zhang
  • Yong Liu
  • Di Jiang
  • Yuanchao Zhang
  • Chunshui Yu
  • Tianzi Jiang
چکیده

The inferior parietal lobule (IPL) is a functionally and anatomically heterogeneous region. Much of the information about the anatomical connectivity and parcellation of this region was obtained from histological studies on non-human primates. However, whether these findings from non-human primates can be applied to the human inferior parietal lobule, especially the left inferior parietal lobule, which shows evidence of considerable evolution from primates to humans, remains unclear. In this study, diffusion MRI was employed to investigate the anatomical connectivities of the human left inferior parietal lobule. Using a new algorithm, spectral clustering with edge-weighted centroidal voronoi tessellations, to search for regional variations in the probabilistic connectivity profiles of all left inferior parietal lobule voxels with all the rest of the brain identified six subregions with distinctive connectivity properties in the left inferior parietal lobule. Consistent with cytoarchitectonic findings, four subregions were found in the left supramarginal gyrus and two subregions in the left angular gyrus. The specific connectivity patterns of each subregion of the left inferior parietal lobule were supported by both the anatomical and functional connectivity properties for each subregion, as calculated by a meta-analysis-based target method and by voxel-based whole brain anatomical and functional connectivity analyses. The proposed parcellation scheme for the human left inferior parietal lobule and the maximum probability map for each subregion may facilitate more detailed future studies of this brain area.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity.

Despite the prominence of parietal activity in human neuroimaging investigations of sensorimotor and cognitive processes, there remains uncertainty about basic aspects of parietal cortical anatomical organization. Descriptions of human parietal cortex draw heavily on anatomical schemes developed in other primate species, but the validity of such comparisons has been questioned by claims that th...

متن کامل

Parcellation of left parietal tool representations by functional connectivity.

Manipulating a tool according to its function requires the integration of visual, conceptual, and motor information, a process subserved in part by left parietal cortex. How these different types of information are integrated and how their integration is reflected in neural responses in the parietal lobule remains an open question. Here, participants viewed images of tools and animals during fu...

متن کامل

Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques

The human inferior parietal lobule (IPL) is a multimodal brain region, subdivided in several cytoarchitectonic areas which are involved in neural networks related to spatial attention, language, and higher motor processing. Tracer studies in macaques revealed differential connectivity patterns of IPL areas as the respective structural basis. Evidence for comparable differential fibre tracts of ...

متن کامل

Selective functional connectivity abnormality of the transition zone of the inferior parietal lobule in schizophrenia

Structural and functional alterations in the inferior parietal lobule (IPL) in schizophrenia have been frequently reported; however, the IPL connectivity changes in schizophrenia remain largely unknown. Based on heterogeneity of the IPL in structure, connection and function, we hypothesize that the resting-state functional connectivities (rsFCs) of the IPL subregions are differentially affected...

متن کامل

Functional Clustering of the Human Inferior Parietal Lobule by Whole-Brain Connectivity Mapping of Resting-State Functional Magnetic Resonance Imaging Signals

The human inferior parietal lobule (IPL) comprised the lateral bank of the intraparietal sulcus, angular gyrus, and supramarginal gyrus, defined on the basis of anatomical landmarks and cytoarchitectural organization of neurons. However, it is not clear as to whether the three areas represent functional subregions within the IPL. For instance, imaging studies frequently identified clusters of a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 63 2  شماره 

صفحات  -

تاریخ انتشار 2012